Saturday, December 12, 2015

Retrofitting of Reinforced Concrete Beam with Externally Bonded CFRP



Abstract:- In our country many of the existing reinforced concrete structures are in need of repair or reconstruction, rehabilitation, because of deterioration due to various factors like corrosion, lack of detailing, failure of bonding between beam-column joints, increase in service loads, improper design and unexpected external lateral loads such as wind or seismic forces acting on a structure, environment and accident events etc., leading to cracking, spalling, loss of strength, deflection, etc. Strengthening of existing reinforced concrete structures is necessary to obtain an expected life span and achieve specific requirements. The need for efficient rehabilitation and strengthening techniques of existing concrete structures has resulted in research and development of composite strengthening systems. Recent experimental and analytical research have demonstrated that the use of composite materials for retrofitting existing structural components is more cost-effective and requires less effort and time than the traditional means. Fiber Reinforced Polymer (FRP) composite has been accepted in the construction industry as a capable substitute for repairing and strengthening of RCC structures. The superior properties of (FRP) polymer composite materials like high corrosion resistance, high strength, high stiffness, excellent fatigue performance and good resistance to chemical attack etc., has motivated the researchers and practicing engineers to use the polymer composites in the field of rehabilitation of structures. During past two decades, much research has been carried out on shear and flexural strengthening of reinforced concrete beams using different types of fiber reinforced polymers and adhesives. A detailed Literature review based on the previous experimental and analytical research on retrofitting of reinforced concrete beams is presented. Proposed method of strengthening the RC beam is decided based on the previous experimental and analytical research. Behaviors of retrofitted reinforced concrete beams with externally bonded CFRP with various types of resins (Epoxy, Orthophthalic Resin (GP), ISO resin) after initial load (60 % control beam) is investigated. Static load responses of all the beams under two point load method had evaluated in terms of flexural strength, crack observation, compositeness between CFRP fabric and concrete, and the associated failure modes.  

Keywords: Fiber Reinforced Polymer (FRP), CFRP fabric, reinforced concrete structures

I.   Introduction

Concrete is the most widely used man-made construction material in world. It is obtained by mixing cementing materials, water and aggregates, and sometimes admixtures is required proportions. Concrete has high compressive strength, low cost and abundant raw material, but its tensile strength is very low. Reinforced concrete, which is concrete with steel bars embedded in it. Concrete is an affordable material, which is extensively used throughout in the infrastructure of nation’s construction, industry, transportation, defense, utility, and residential sector. The flexibility and mould ability of this material, its high compressive strength, and the discovery of the reinforcing and prestressing techniques which helped to make up for its low tensile strength have contributed largely to its widespread use.
     Reinforced concrete structures often have to face modification and improvement of their performance during their service life. In such circumstances there are two possible solutions. The first is replacement and the other is retrofitting. Full structure replacement might have determinate disadvantages such as high costs for material and labour, a stronger environmental impact and inconvenience due to interruption of the function of the structure e.g. traffic problems. So if possible, it is often better to repair or upgrade the structure by retrofitting. Retrofitting methods is shown in figure 2.1.1. In recent years repair and retrofit of existing structures such as buildings, bridges, etc., have been quite prevalent among the most important challenges in Civil Engineering. 

II.  Methodology and experimental program

This study is mainly material collection, material testing, mix design casting of cubes At last the final stage the, compressive strength, tensile strength and flexural strength tests were conducted.

For more Information Click Here



Wednesday, December 9, 2015

Development of ANN and AFIS Models for Age Prediction of in-Service Transformer Oil samples


Author Name:- Mohammad Aslam Ansari 

Department of Electrical Engineering 


Abstract:- Power transformer is one of the most important and expensive equipment in electrical network. The transformer oil is a very important component of power transformers. It has twin functions of cooling as well as insulation. The oil properties like viscosity, specific gravity, flash point, oxidation stability, total acid number, breakdown voltage, dissipation factor, volume resistivity and dielectric constant suffer a change with respect to time. Hence it is necessary that the oil condition be monitored regularly to predict, if possible, the remaining lifetime of the transformer oil, from time to time. Six properties such as moisture content, resistivity, tan delta, interfacial tension and flash point have been considered. The data for the six properties with respect to age, in days, has been taken from literature, whereby samples of ten working power transformers of 16 to 20 MVA installed at different substations in Punjab, India have been considered. This paper aims at developing ANN and ANFIS models for predicting the age of in-service transformer oil samples. Both the the models use the six properties as inputs and age as target. ANN (Artificial Neural Network) model uses a multi-layer feedforward network employing back propagation algorithm, and ANFIS (Adaptive Neuro Fuzzy Inference System) model is based on Sugeno model. The two models have been simulated for estimating the age of unknown transformer oil samples taken from generator transformers of Anpara Thermal Power Project in state of U.P. India. A comparative analysis of the two models has been made whereby ANFIS model has been found to yield better results than ANN model.     

Keywords: ANN, ANFIS, Power Transformer, Regression, Performance, Backpropagation Algorithm   

I.         Introduction

Power transformer is one of the most important constituent of electrical power system. The transformer oil, a very important ingredient of power transformers, acts as a heat transfer fluid and also serves the purpose of electrical insulation. Its insulating property is subjected to the degradation because of the ageing, high temperature, electrical stress and other chemical reactions. Hence it is necessary that the oil condition be monitored regularly. This will help to predict, if possible, the in-service period or remaining lifetime of the transformer oil, from time to time.
       There are several characteristics which can be measured to assess the present condition of the oil. The main oil characteristics are broadly classified as physical, chemical and electrical characteristics; some of these are viscosity, specific gravity, flash point, oxidation stability, total acid number, breakdown voltage, dissipation factor, volume resistivity and dielectric constant. There exists a co-relation among some of the oil properties and suffer a change in their values with respect to time [2]. This variation of oil properties with respect to time has been utilised to develop the two models as said earlier
      The training data for the proposed work have been obtained from literature, whereby ten working transforms of 16 to 20 MVA, 66/11 KV installed at different substations in the state of Punjab, India have been considered. The six properties of transformer oil such as breakdown voltage (BDV), moisture, resistivity, tan delta, interfacial tension and flash point have been considered as inputs and age as target. Test data have been taken from generator transformers of 250 MVA, 15.75kV/400kV from Anpara Thermal Power Project in state of U. P., India.

II.     “Ann” and “Anfis” methods

It is known that classical models need linear data for their processing, therefore models like ANN and ANFIS that are based on soft computing techniques, play an important role for solving these kinds of non-linear problems.
        Neural networks exhibit characteristics such as mapping capabilities or pattern association, generalization, robustness, fault tolerance, parallel and high speed processing. Neural networks can be trained with known examples of a problem to acquire knowledge about it. Once trained successfully, the network can be put to effective use in solving unknown or untrained instances of the problem. ANN model which uses multilayer feed forward network is based on back propagation (BP) learning algorithm of neural network. Backpropagation gives very good answers when presented with inputs never seen before. This property of generalization makes it possible to train a network on giving set of input-target pairs and get good output.

For More Information Click Here

Monday, December 7, 2015

A Time Domain Reference-Algorithm for Shunt Active Power Filters



Abstract:- The aim of this paper is to identify an optimum control strategy of three-phase shunt active filters to minimize the total harmonic distortion factor of the supply current Power Quality (PQ) is an important measure of an electrical power system. The term PQ means to maintain purely sinusoidal current wave form in phase with a purely sinusoidal voltage wave form. The power generated at the generating station is purely sinusoidal in nature. The deteriorating quality of electric power is mainly because of current and voltage harmonics due to wide spread application of static power electronics converters, zero and negative sequence components originated by the use of single phase and unbalanced loads, reactive power, voltage sag, voltage swell, flicker, voltage interruption etc. The simulation and the experimental results of the shunt active filter, along with the estimated value of reduction in rating, show that the shunt filtering system is quite effective in compensating for the harmonics and reactive power, in addition to being cost-effective.   

Keywords: Shunt voltage inverter APF, Time domain, instantaneous active power, carrier based PWM, Control strategy etc.

I.     Introduction

The wide use of power devices (based on semi-conductor switches) in power electronic appliances (diode and thyristor rectifiers, electronic starters, UPS and HVDC systems, arc furnaces, etc…) induces the appearance of the dangerous phenomenon of harmonic currents flow in the electrical feeder networks, producing distortions in the current/voltage waveforms. As a result, harmful consequences occur: equipment overheating, malfunction of solid-state material, interferences with telecommunication systems, etc... Damping harmonics devices must be investigated when the distortion rate exceeds the thresholds fixed by the ICE 61000 and IEEE 519 standards. For a long time, tuned LC and high pass shunt passive filters were adopted as a viable harmonics cancellation solution.

II.    Shunt active filtering algorithms

The control algorithm used to generate the reference compensation signals for the active power filter determines its effectiveness. The control scheme derives the compensation signals using voltage and/or current signals sensed from the system. The control algorithm may be based on frequency domain techniques or time domain techniques. In frequency domain, the compensation signals are computed using Fourier analysis of the input voltage/current signals. In time domain, the instantaneous values of the compensation voltages/currents are derived from the sensed values of input signals. There are a large number of control algorithms in time domain such as the instantaneous PQ algorithm, synchronous detection algorithm, synchronous reference frame algorithm and DC bus voltage algorithm. The instantaneous PQ algorithm by Akagi  is based on Park’s transformation of input voltage and current signals from which instantaneous active and reactive powers are calculated to arrive at the compensation signals. This scheme is most widely used because of its fast dynamic response but gives inaccurate results under distorted and asymmetrical source conditions.

For  More Information Click Here

Saturday, November 28, 2015

#IJIRST Journal:- Performance of WRF (ARW) over River Basins in Odisha, India During Flood Season 2014



India Meteorological Department, New Delhi, India

Abstract:- Operational Weather Research & Forecasting – Advanced Research WRF in short WRF (ARW) 9 km x 9 km Model (IMD) based rainfall forecast of India Meteorological Department (IMD) is utilized to compute rainfall forecast over River basins in Odisha during Flood season 2014. The performance of the WRF Model at the sub-basin level is studied in detail. It is observed that the IMD’s WRF (ARW) day1, day2, day3 correct forecast range lies in between 31-47 %, 37-43%, and 28-47% respectively during the flood season 2014.

Keywords: GIS; WRF (ARW); IMD; Flood 2014; Odisha     

I.      Introduction

Forecast during the monsoon season river sub-basin wise in India is difficult task for meteorologist to give rainfall forecast where the country have large spatial and temporal variations. India Meteorological Department (IMD) through its Flood Meteorological Offices (FMO) is issuing Quantitative Precipitation Forecast (QPF) sub-basin wise for all Flood prone river basins in India (IMD, 1994). There are 10 FMOs all over India spread in the flood prone river basins and FMO Bhubaneswar, Odisha is one of them. The Categories in which QPF are issued are as follows

Rainfall (in mm)
0
1-10
11-25
26-50
51-100
>100
    
    Odisha is an Indian state on the subcontinent’s east coast, by the Bay of Bengal. It is located between the parallels of 17.49’ N and 22.34’ N Latitudes and meridians of 81.27’ E and 87.29’ E Longitudes. It is surrounded by the Indian states of West Bengal to the north-east and in the east, Jharkhand to the north, Chhattisgarh to the west and north-west and Andhra Pradesh to the south. Bhubaneswar is the capital of Odisha.
     Odisha is the 9th largest state by area in India and the 11th largest by population. Odisha has a coastline about 480 km long. The narrow, level coastal strip including the Mahanadi river delta supports the bulk of the population. On the basis of homogeneity, continuity and physiographical characteristics, Odisha has been divided into five major morphological regions. The Odisha Coastal Plain in the east, the Middle Mountainous and Highlands Region, the Central Plateaus, the western rolling uplands and the major flood plains.     

A.      River System

The river system of Odisha comprises the Mahanadi, Brahmani, Baitarani, Subarnarekha, Vamasadhara, Burhabalanga, Rushikulya, Nagavali, Indravati, Kolab, Bahuda, Jambhira and other tributaries and distributaries.

For More Information Click Here

Friday, November 27, 2015

Evaluation of Response Reduction Factor using Nonlinear Analysis #IJIRST Journal


Author Name:- Tia Toby

Department of Civil Engineering

Abstract:- The main objective of the study is to evaluate the response reduction factor of RC frames. We know that the actual earthquake force is considerably higher than what the structures are designed for. The structures can't be designed for the actual value of earthquake intensity as the cost of construction will be too high. The actual intensity of earthquake is reduced by a factor called response reduction factor R. The value of R depends on ductility factor, strength factor, structural redundancy and damping. The concept of R factor is based on the observations that well detailed seismic framing systems can sustain large inelastic deformation without collapse and have excess of lateral strength over design strength. Here the nonlinear static analysis is conducted on regular and irregular RC frames considering OMRF and SMRF to calculate the response reduction factor and the codal provisions for the same is critically evaluated. 

Keywords: Response Reduction Factor, Ductility Factor, Strength Factor, Nonlinear Analysis, Regular and Irregular Frames, OMRF, SMRF

I.    Introduction

The devastating potential of an earthquake can have major consequences on infrastructures and lifelines. In the past few years, the earthquake engineering community has been reassessing its procedures, in the wake of devastating earthquakes which have caused extensive damage, loss of life and property. These procedures involve assessment of seismic force demands on the structure and then developing design procedures for the structure to withstand the applied actions Seismic design follows the same procedure, except for the fact that inelastic deformations may be utilized to absorb certain levels of energy leading to reduction in the forces for which structures are designed. This leads to the creation of the Response Modification Factor (R factor); the all-important parameter that accounts for over-strength, energy absorption and dissipation as well as structural capacity to redistribute forces from inelastic highly stressed regions to other less stressed locations in the structure. This factor is unique and different for different type of structures and materials used. The objective of this paper is to evaluate the response reduction factor of a RC frame designed and detailed as per Indian standards IS 456, IS 1893 and IS 13920.The codal provisions for the same will be critically evaluated. Moreover parametric studies will be done on both regular and irregular buildings and finally a comparison of R value between OMRF and SMRF is also done.

II.  Definition of r factor and its components

During an earthquake, the structures may experience certain inelasticity, the R factor defines the levels of inelasticity. The R factor is allowed to reflect a structures capability of dissipating energy via inelastic behavior. The statically determinate structures response to stress will be linear until yielding takes place. But the behavioral change in structure from elastic to inelastic occurs as the yielding prevails and linear elastic structural analysis can no longer be applied. The seismic energy exerted by the structure is too high which makes the cost of designing a structure based on elastic spectrum too high. To reduce the seismic loads, IS 1893 introduces a “response reduction factor” R. So in order to obtain the exact response, it is recommended to perform Nonlinear analysis. In actual speaking R factor is a measure of overstrength and redundancy. It may be defined as a function of various parameters of the structural system, such as strength, ductility, damping and redundancy.

For More Information Click Here

Friday, November 20, 2015

Performance Assessment for Students using Different Defuzzification Techniques # IJIRST India


Author Name:- Anjana Pradeep, Jeena Thomas

Department of Computer Science & Engineering

Abstract:- The aim of this study is to evaluate the performance of students using a fuzzy expert system. The fuzzy process is based solely on the principle of taking non-precise inputs on the factors affecting the performance of students and subjecting them to fuzzy arithmetic to obtain a crisp value of the performance. The system classifies each student's performance by considering various factors using fuzzy logic. Aimed at improving the performance of fuzzy system, several defuzzification methods other than the built methods in MATLAB have been devised in this system for producing more accurate and quantifiable result.  This study provides comparison and in depth examination of various defuzzification techniques like Weighted Average Formula (WAF), WAF-max method and Quality Method (QM). A new defuzzification method named as Max-QM which is extended from Quality method that falls within the general framework is also given and commented upon in this study.      

Keywords: Fuzzy logic, Fuzzy Expert System, Defuzzification, Weighted Average Formula, Quality Method 

I.   Introduction

An expert system is a software program that can be used to solve complex reasoning tasks that usually require a (human) expert. In other words, an expert system should help a novice, or partly experienced, problem solver, to match acknowledged experts in the particular domain of problem solving that the system is designed to assist. To be more specific, expert systems are generally conceptualized as shown in Fig 1. The user makes an interaction through the interface system and the system questions the user through the same interface in order to obtain the vital information upon which a decision is to be made. Behind this interface, there are two other sub-systems viz. the knowledge base, which is made up of all the domain-specific knowledge that human experts use when solving that category of problems and the inference engine, a system that performs the necessary reasoning and uses knowledge from the knowledge base in order to come to a judgment with respect to the problem modelled [1].
     Expert system has been playing a major role in many disciplines such as in medicines, assist physician in diagnosis of diseases, in agriculture for crop management, insect control, in space technology and  in power systems for fault diagnosis[5]. Some expert systems have been developed to replace human experts and to aid humans. The use of an expert system is increasing day by day in today’s world [40]. Expert systems are becoming an integral part of engineering education and even other courses like accounting and management are also accepting them as a better way of teaching[4].Another feature that makes expert system more demanding for students is its ability to adaptively adjust the training for each particular student on the bases of individual students learning pace. This feature can be used more effectively in teaching engineering students. It should be able to monitor student’s progress and make a decision about the next step in training.

Fig. 1: Expert system structure
        The few expert systems available in the market present a lot of opportunities for the students who desire more spotlight and time to learn the subjects. Some expert systems present an interactive and friendly environment for students which encourage them to study and adopt a more practical approach towards learning. The expert systems can also act as an assistor or substitute for the teacher. Expert systems focus on each student individually and also keep track of their learning pace. This behavior of an expert system provides autonomous learning procedure for both student and teacher, where teachers act as mentor and students can judge their own performance. Expert system is not only beneficial for the students but also for the teachers which help them guiding students in a better way.
        The integration of fuzzy logic with an expert system enhances its capability and is called a fuzzy expert system, as it is useful for solving real world problems which do not require a precise solution. So, there is a need to develop a fuzzy expert system as it can handle imprecise data efficiently and reduces the manual working while enhancing the use of expert system[40].

      There are various factors inside and outside college that results in poor quality of academic performance of students[2,3]. To determine all the influencing factors in a single effort is a complex and difficult task. It necessitates a lot of resources and time for an educator to identify all these factors first and then plan the classroom activities and approaches of teaching and learning. It also requires appropriate training, organizational planning and skills to conduct such studies for determining the contributing factors inside and outside college. This process of identification of determinants must be given full attention and priority so that the teachers may be able to develop instructional strategies for making sure that all the students be provided with the opportunities to attain at their fullest potential in learning and performance.  By using suitable statistical package it was found that communication, learning facilities, proper guidance and family stress were the factors that affect the student performance. Communication, learning facilities and proper guidance showed a positive impact on student performance and family stress showed a negative impact on student performance. It is indicated that communication is more important factor that affect the student performance than learning facilities and proper guidance [3].

      In this research article seven most important factors are included which affect the students’ performance. These are personal factors, college environment, family factors, and university factors, teaching factors, attendance and marks obtained by students. All these factors are scaled and ranked based on the various sub-factors that are further divided from the base factors. In this study the students’ marks have been focused and not solely on social, economic, and cultural features.  To evaluate students’ performance, fuzzy expert system has been developed by considering all the seven factors as inputs to the system. This system has been developed by taking the data of students collected from St. Josephs College of Engineering and Technology, Palai affiliated to M.G University.

For more Information CLICK HERE

Wednesday, November 18, 2015

A Review on Thermal Insulation and Its Optimum Thickness to Reduce Heat Loss

Title:- A Review on Thermal Insulation and Its Optimum Thickness to Reduce Heat Loss

Author Name: Dinesh Kumar Sahu, Prakash Kumar Sen, Gopal Sahu, Ritesh Sharma, Shailendra Bohidar

Department of Mechanical Engineering

Kirodimal Institute of Technology, Raigarh (C.G.)

Abstract:- An understanding of the mechanisms of heat transfer is becoming increasingly important in today’s world. Conduction and convection heat transfer phenomena are found throughout virtually all of the physical world and the industrial domain. A thermal insulator is a poor conductor of heat and has a low thermal conductivity. In this paper we studied that Insulation is used in buildings and in manufacturing processes to prevent heat loss or heat gain. Although its primary purpose is an economic one, it also provides more accurate control of process temperatures and protection of personnel. It prevents condensation on cold surfaces and the resulting corrosion. We also studied that critical radius of insulation is a radius at which the heat loss is maximum and above this radius the heat loss reduces with increase in radius. We also gave the concept of selection of economical insulation material and optimum thickness of insulation that give minimum total cost.       

Keywords: Heat, Conduction, Convection, Heat Loss, Insulation

I.    Introduction

Heat flow is an inevitable consequence of contact between objects of differing temperature. Thermal insulation provides a region for insulation in which thermal conduction is reduced or thermal radiation is reflected rather than absorbed by the lower temperature body. To change the temperature of an object, energy is required in the form of heat generation to increase the temperature, or heat extraction to reduce the temperature. Once the heat generation or heat extraction is terminated a reverse flow of heat occurs to reverse the temperature back to ambient. To maintain a given temperature considerable continuous energy is required. Insulation will reduce this energy loss.
     Heat may be transferred in three mechanisms: conduction, convection and radiation. Thermal conduction is the molecular transport of heat under the effect of temperature gradient. Convection mechanism of heat occurs in liquids and gases, whereby the flow processes transfer heat. Free convection is flow caused by the differences in density as a result of temperature differences. Forced convection is flow caused by external influences (wind, ventilators, etc.). Thermal radiation mechanism occurs when thermal energy is emitted similar to light radiation.


      Heat transfers through insulation material occur by means of conduction, while heat loss to or heat gain from atmosphere occurs by means of convection and radiation. Materials, which have a low thermal conductivity, are those, which have a high proportion of small voids containing air or gases. These voids are not big enough to transmit heat by convection or radiation, and therefore reduce the flow of heat. Thermal insulation materials come into the latter category. Thermal insulation materials may be natural substances or man-made.

II.   The Need for Insulation


A thermal insulator is a poor conductor of heat and has a low thermal conductivity. Insulationis used in buildings and in manufacturing processes to prevent heat loss or heat gain. Although its primary purpose is an economic one, it also provides more accurate control of process temperatures and protection of personnel. It prevents condensation on cold surfaces and the resulting corrosion. Such materials are porous, containing large number of dormant air cells. Thermal insulation delivers the following benefits: [1][2]

A.      Energy Conservation

Conserving energy by reducing the rate of heat flow (fig 1) is the primary reason for insulating surfaces. Insulation materials that will perform satisfactorily in the temperature range of -268°C to 1000°C are widely available.
Fig. 1: Thermal insulation retards heat transfer by acting as a barrier in the path of heat flow

B.      Personnel Protection and Comfort


A surface that is too hot poses a danger to people who are working in that area of accidentally touching the hot surface and burning themselves. To prevent this danger and to comply with the OSHA (Occupational Safety and Health Administration) standards, the temperatures of hot surfaces should be reduced to below 60°C (140°F) by insulating them. 

For more information Click Here

Tuesday, September 29, 2015

Study on the Ductile Characteristics of Hybrid Ferrocement Slab #IJIRST Journal


Department of Civil Engineering

Poojya Doddappa Appa college of Engineering, Kalaburagi – 585102, Karnataka, India

Abstract:- This paper presents the ductile characteristics of hybrid Ferro cement slab incorporating polypropylene fibres and GFRP sheet. A total of 9 slab have been tested under two point flexural loading. The size of the slab is 1000 mm(length) x1000 mm(width) x 60 mm(thickness). The parameters studied in this investigation includes the number of weld mesh layers, polypropylene fibres i.e (0.3%) and GFRP sheet. from the studies, it is observed that the load carrying capacity and deformation. The stiffness of the specimens with zero layer weld mesh is lower than that of the specimens with two layers and three layers bundled. Further, there is reduction in number of cracks with increase in fibre content.

Keyword:- Ferrocement Slabs, GFRP Wrapping, Fibre Reinforcement, Ductility Factors, Crack Pattern

I.       Introduction

The development of new technology in the material science is progressing rapidly. In recent two or three decades, a lot research was carried out throughout globe for how to improve the performance of concrete in terms of strength and durability qualities. consequently concrete has no longer remained as a construction material. A new material consisting of wire meshes and cement mortar called ferrocement. it is one of the construction materials which may be able to fill the need for building light structures. ferrocement composite consist of cement-sand mortar and single or multi-layers of steel wire mesh to produce elements of small thickness having high durability, and when properly shaped it has high strength and rigidity. These thin elements can be shaped to produce structural members such as folded plates, flanged beams, wall pane,. etc for use in the construction of cheap structures. Ferro cement elements are generally more ductile when compared to conventional reinforced concrete elements but post peak portion of load- deflection curve in bending test of Ferro cement elements reveals that failure occur  either due to mortar failure in compression or due to failure of extreme layers of mesh.  From the above discussions, it can be noted that, research work out on the ductile behavior of hybrid ferrocement slab with fibre. The present Investigation is aimed at to investigate the ductile behavior of hybrid ferrocement slabs with and without Considering the effect of fibres.  Compared with the conventional reinforced concrete, ferrocement is reinforced in two directions; therefore, it has homogenous-isotropic properties in two directions. Benefiting from its usual high reinforcement ratio, ferrocement generally has a high tensile strength and a high modulus of rupture. In addition, since the specific surface of reinforcement in ferrocement is one to two orders of magnitude higher than that of reinforced concrete, larger bond forces develop with the matrix resulting in average crack spacing and width more than one order of magnitude smaller than in conventional reinforced concrete (Shah and Naaman 1997, Guerra et al 1978). Other appealing features of ferrocement include ease of prefabrication and low cost in maintenance and repair. Based on the abovementioned advantages, the typical applications of ferrocement are water tanks, boats, housing wall panel, roof, formwork and sunscreen (Nimityongskul et al 1980 and Kadir 1997).. Ferrocement over the years have gained respect in terms of its superior performance and versatility. Ferrocement is a form of reinforced concrete using closely spaced multiple layers of mesh and/or small diameter rods completely infiltrated with, or encapsulated in, mortar. In 1940 Pier Luigi Nervy, an Italian engineer, architect and contractor, used ferrocement first for the construction of aircraft hangars, boats and buildings and a variety of other structures. It is a very durable, cheap and versatile material.

II.       Experimental investigation

The experimental investigation consists of testing of nine hybrid ferrocement slabs. the Variables Considered In The Study(I) Numbers Of Welded Square Mesh Reinforcement.(ii) Percentage of polypropylene fibres in mortar.(iii) Number of GFRP layer wrapping. The details of experimental studies including characterization are presented below.

A.      Materials Used

The materials that are used in this experiment are cement, steel fiber, fine aggregate, super plasticizer and water.

1)     Cement:

OPC 53 grade cement from a single batch has been used throughout the course of the project work, properties of cement are shown in table 2.

For more information go on below link.

Thursday, September 24, 2015

Applications and Challenges of Human Activity Recognition using Sensors in a Smart Environment #IJIRST Journal


Department of Computer Science and Engineering

St. Joseph’s College of Engineering and Technology, Palai, Kerala, India

Abstract:- We are currently using smart phone sensors to detect physical activities. The sensors which are currently being used are accelerometer, gyroscope, barometer, etc. Recently, smart phones, equipped with a rich set of sensors, are explored as alternative platforms for human activity recognition. Automatic recognition of physical activities – commonly referred to as human activity recognition (HAR) – has emerged as a key research area in human-computer interaction (HCI) and mobile and ubiquitous computing. One goal of activity recognition is to provide information on a user’s behavior that allows computing systems to proactively assist users with their tasks. Human activity recognition requires running classification algorithms, originating from statistical machine learning techniques. Mostly, supervised or semi-supervised learning techniques are utilized and such techniques rely on labeled data, i.e., associated with a specific class or activity. In most of the cases, the user is required to label the activities and this, in turn, increases the burden on the user. Hence, user- independent training and activity recognition are required to foster the use of human activity recognition systems where the system can use the training data from other users in classifying the activities of a new subject.

Keyword:- Human Activity Recognition

I.       Introduction

Mobile phones or smart phones are rapidly becoming the central computer and communication device in people’s lives. Smart phones, equipped with a rich set of sensors, are explored as an alternative platform for human activity recognition in the ubiquitous computing domain. Today’s Smartphone not only serves as the key computing and communication mobile device of choice, but it  also comes with a rich set of embedded sensors [1], such as an accelerometer, digital compass, gyroscope, GPS, microphone, and camera. Collectively, these sensors are enabling new applications across a wide variety of domains, such as healthcare, social networks, safety, environmental monitoring, and transportation, and give rise to a new area of research called mobile phone sensing. Human activity recognition systems using different sensing modalities, such as cameras or wearable inertial sensors, have been an active field of research. Besides the inclusion of sensors, such as accelerometer, compass, gyroscope, proximity, light, GPS, microphone, camera, the ubiquity, and unobtrusiveness of the phones and the availability of different wireless interfaces, such as WI-Fi, 3G and Bluetooth, make them an attractive platform for human activity recognition. The current research in activity monitoring and reasoning has mainly targeted elderly people, or sportsmen and patients with chronic conditions.
The percentage of elderly people in today’s societies keep on growing. As a consequence, the problem of supporting older adults in loss of cognitive autonomy who wish to continue living independently in their home as opposed to being forced to live in a hospital. Smart environments have been developed in order to provide support to the elderly people or people with risk factors who wish to continue living independently in their homes, as opposed to live in an institutional care. In order to be a smart environment, the house should be able to detect what the occupant is doing in terms of one’s daily activities. It should also be able to detect possible emergency situations. Furthermore, once such a system is completed and fully operational, it should be able to detect anomalies or deviations in the occupant’s routine, which could indicate a decline in his abilities. In order to obtain accurate results, as much information as possible must be retrieved from the environment, enabling the system to locate and track the supervised person in each moment, to detect the position of the limbs and the objects the person interacts or has the intention to interact with. Sometimes, details like gaze direction or hand gestures [1] can provide important information in the process of analyzing the human activity. Thus, the supervised person must be located in a smart environment, equipped with devices such as sensors, multiple view cameras or speakers.
Although smart phone devices are powerful tools, they are still passive communication enablers rather than active assistive devices from the user’s point of view. The next step is to introduce intelligence into these platforms to allow them to proactively assist users in their everyday activities. One method of accomplishing this is by integrating situational awareness and context recognition into these devices. Smart phones represent an attractive platform for activity recognition, providing built-in sensors and powerful processing units. They are capable of detecting complex everyday activities of the user (i.e. Standing, walking, biking) or the device (i.e.  Calling), and they are able to exchange information with other devices and systems using a large variety of data communication channels.
Mobile phone sensing is still in its infancy. There is little or no consensus on the sensing architecture for the phone. Common methods for collecting and sharing data need to be developed. Mobile phones cannot be overloaded with continuous sensing commitments that undermine the performance of the phone (e.g., by depleting battery power). It is not clear what architectural components [4] should run on the phone. Individual mobile phones collect raw sensor data from sensors embedded in the phone. Information is extracted from the sensor data by applying machine learning and data mining techniques. These operations occur either directly on the phone. Where these components run could be governed by various architectural considerations, such as privacy, providing user real-time feedback, reducing communication cost between the phone and cloud, available computing resources, and sensor fusion requirements.The rest of the paper is organized as follows: Section II presents some existing methods. Section III describes important sensors used for human activity recognition. Chapter IV represents various challenges and applications of activity recognition. Conclusions are presented in Chapter V.
For more information go on below link.


Wednesday, September 23, 2015

#IJIRST Journal




Top Rated International Journal  Recommended By Most of University

Impact Factor : 1.638

ISSN : 2349-6010

Publish Your Research article with ijirst.org 

We Accept Only Quality Papers...

No Profit No loss International Journal to Promote Research Scholar..


submit Your Article : www.ijirst.org

Tuesday, September 22, 2015

Dynamic Power Reduction in NOC by Encoding Techniques #IJIRST Journal


Abstract:- As technology improve the size will be reduced, and the power dissipated by the links of a network-on-chip (NoC) is starts to participate with the power dissipate by the other element of communication system, for example the routers and the network interfaces (NIs). We design an set of data encoding technique by different schemes to decrease the power dissipation by an links of NoC, which optimizing the on-chip communication system not only in terms of performance but also in terms of power. The idea presented in this paper is base on encoding the packets before they are inserted in to the network in such a way as to minimize both the switching action and the coupling-switching action in the NoC’s link which represent the main factor of power dissipation. These schemes were universal and transparent with respect to the construct NoC fabric that means this application will not require any change in the router and link of architecture. These will be carried in both artificial and real traffic scenario. These effective of the proposed scheme will tolerate to save the energy consumption and power dissipation without changing the performance degradation and with less area consumption in the NI.  

Keywords: switching action, encoding, network-on-chip (NoC), low power, router, Network interfaces (NIs)

I.       Introduction

Moving towards silicon technology node to the next results faster and more efficient gates but slower because there is a more power hungry wires. More than 50% of total dynamic power is dissipate in interconnection in current processor, and this was expected to increase more over in the next several years. Global interconnect length does not scale with smaller transistors and local wires. Chip size remains relatively constant because the chip function continues for instance the RC delay increases exponentially. The RC delay in a 1-mm worldwide wire at the smallest pitch is superior to the intrinsic delay of a two-input NAND fan-out. If the raw computation horsepower seems to be un-limited, thanks to the ability of instance more core’s in a single silicon chip, scalable issue occur, due to making an efficient and reliable communication among the increasing number of core’s, become the real problem. The NOC invent is documented as the most feasible way to tackle with scalable and variability issue that characterize the ultra-deep sub-micron-meter.
Now a days in the on-chip communication issue is relevant, in some of the case more relevant than commutating related issue. The communication sub-system more and more impacts the usual designed objective, and also includes cost (i.e., area of silicon), performances, dissipation of power, consumption of energy and reliability. As technology improves the size is reducing and more fraction of total power is budget of the complex in more core of the system-on-chip (SoC) this is because of communication sub-system.
Here we attentation on the technique aim to minimize power dissipation by a network link. The power dissipation in the network is relevant as that dissipation by NIs, routers and it is giving that ordinary to increase the technology scale. We are representing the set of encoding schemes for data which is in binary formate, and it is operated at flit level, and an end-to-end basis, this allows us to minimize the switching action and coupling switching action at the link of an direction is traverse by a packet. This encoding schemes, were transparent by respect to router execution, and they are presented, discussed in both algorithmic-level and architectural level, it is assessed via the simulation in the artificial, real traffic scenario. These analysis gives an different aspects, metrics design, it include area of silicon, energy consumption and dissipation of power. From the results we can conclude that with these proposed encoding schemes that power will save and also energy will be save without changing any major degradation in the performance in the NIs.

II.       Motivation and Related work

The accessibility of chips is growing every year. In next few years, the accessibility of cores with 1000 cores is foreseen. Since the focus of this paper is to decrease the power dissipation by link which decreases the dynamic power, here we are going review the works in the area and link power reduction. Also these will include some technique. They are, use of shielding to  increase line-to-line space and repeater insertion. So above technique have large area consumption. One method is the data encoding technique, its mainly focus is to reduce the link power. The encoding technique’s is categorize in to two group. In 1st group we are going to decrease the power by the self-switching action of the each bus line and avoid the dissipation of power by coupling switching action.

These work concentrate on the different component of the inter connection network such as NIs, router, and link. Because these will reduce power dissipation by an link, in this paper, we are going to brief the review some works in the region of link power reduction. These include the technique that make use of shielding, which increase line-to-line space and repeater inserted. They all increases the silicon chip area. These encode scheme is an additional technique that is employed to reduce dissipation of power in link. The data encoding technique has been classified in to two class. In the first class, encoding technique concentrate on reducing the power due to self-switching action of separate bus line while ignoring an power dissipation due to their coupling-switching action. In these class, bus invert (BI) and INC-XOR have been proposed for these case that casual random data pattern is transmitte through the lines. On the other hand, gray code, T0, working-zone encoding, and T0-XOR were suggest for the case of correlation data pattern. Application particular approach have also been proposed.

Wednesday, September 16, 2015

Design and Modeling of Drum Handling Equipment #IJIRST



Abstract:- This paper presents the use of drum handling equipment in the industries to reduce worker for drum handling. Material handling effect on human studied in this paper. Also study different material handling equipment used in industries.

Keywords: Industries, Material Handlings, Material Handling Hazards


I.       Introduction

In many industries raw material and finished product handled in 210Lit. Drum. They handle drum manually. In work place drum transported, lifted, Loaded, tilted etc. manually. Handling heavy load manually takes more time, also it is hazards and risky. In small pharmaceutical company around 25 different type of raw material use. It is in liquid form which is taken out from 210lit. Drum by loading on horizontal stand. Company requires effective material handling equipment to solve material handling problem.  
Manual drum handling equipment is used to do various function like transport, tilting, lifting, loading, unloading etc. In small industries or work shop drum barrel is handled manually which takes more time and more worker. Handling drum manually without using any equipment is hazards.           
Manual handling is transporting or supporting of a load by one or more workers. It includes the following activities: lifting, holding, putting down, pushing, pulling, carrying or moving of a load.1 The load can be an animate (people or animals) or inanimate (boxes, tools etc.) object.

Manual handling occurs in almost all working environments (factories, warehouses, building sites, farms, hospitals, offices etc.). It can include lifting boxes at a packaging line, handling construction materials, pushing carts, handling patients in hospitals, and cleaning. 

II.       Concept

In this, following objectives are to be carried out –
  1.  To minimize worker for Drum transporting, loading, unloading, lifting and tilting process.
  2.  To study material handling equipment for Drum handling.
  3.  To study the lifting and loading effect on human.
  4.   To study the ergonomic of material handling.
  5.  To Design modified drum tilting mechanism.
  6.  To fabricate prototype model.
  7.  Testing and conclusion.

This paper is published in our journal and for more information CLICK Here









Tuesday, September 15, 2015

#IJIRST Journal

Top Rated International Journal  Recommended By Most of University


ISSN : 2349-6010

Publish Your Research article with ijirst.org 

We Accept Only Quality Papers...

No Profit No loss International Journal to Promote Research Scholar..

www.facebook.com/ijirst

submit Your Article : www.ijirst.org


Monday, September 14, 2015

Impact of Boiler Water Chemistry on Waterside Tube Failures#IJIRST

IJIRST Journal published this paper in our journal. so kindly check it on our website.

Paper Title: Impact of Boiler Water Chemistry on Waterside Tube Failures

Abstract: This paper emphasis on the study of typical premature failure of water wall tubes of two thermal power plant boiler of same capacity (250 MW) and same operational parameter but with different boiler water chemistry.  The investigation concludes on the waterside corrosion in both of the case.  One boiler is running with coordinated phosphate treatment (CPT) and another with all volatile treatment (AVT).  The causes of corrosion were discovered and proposed measures for their elimination were given. Visual examination, chemical analysis of deposits, oxide scale thickness measurement and micro structural examination were carried to ascertain the probable cause/causes of failure. From the investigation, it was finally concluded that the combination of localized high tube metal temperature and wall thinning due to under deposit corrosion led to the premature tube failure in boiler running with coordinated phosphate treatment and localized pitting corrosion in boiler running with AVT. Based on the results and discussions, a possible way to combat the corrosion was proposed.
Keywords: Boiler Water Chemistry, Boiler Tube Failure, Caustic Gauging Corrosion, Pitting Corrosion, Boiler Deposits

I.       Introduction

Thermal power plants contribute about 75% to all India installed capacity of electric power generating stations. In worldwide energy sector, about 37% of electricity is produced by combusting coal [1-2]. Most of the Indian industrial boilers has been a prominent problem of boiler tube failure (BTF).  The tube failure causes loss in generation and which in turn responsible for massive economic loss. All type of boiler tubes have their defined life period and can fail due to various failure mechanisms. So, Successful and reliable operation of steam generating equipment needs the use of the best available methods to prevent scale and corrosion. In the boiler feed water cycle the ingress of contaminants, deposition of contaminants, and corrosion were found as the major carriers of potential problems who may have major role for the analysis of boiler tube failures. Failure can occur in all boiler areas: economizers, waterwalls, super-heaters (SH) and re-heaters (RH). Figure 1 shows simplified schematic of a coal fired sub critical boiler. The boiler tubes are of various sizes and thickness depending upon the pressure and mid wall metal temperature. According to the failures by location, water wall tubes are the second highest failure location after superheater tubes. However, according to the failures by material, carbon steel tubes statistically lead as the most frequent material causing failures. Correct tube material selection to resist the surrounding temperature is also one other decisive factor to stop the chances of BTF. Normally the water touched areas like economizer and waterwalls are made of boiler grade carbon steel. Superheater and reheater will have combination of low alloy tubes of stainless steels tubes. Figure 2[a] and [b] show the schematics of   heat transfer modes in the radiant and convective section of coal fired boiler. When the tube metal is in contact with the steam over period of time, the oxidation process may begin to form a layer of protective magnetite (Fe3O4) scale. Ferrous hydroxide [Fe (OH) 2] is believed to be an intermediate in this process, converting to magnetite above 100°C according to the Schikorr reaction:
Fe + 2 H2O → Fe (OH) 2 + H2
Followed by reaction:
3Fe (OH) 2 → Fe3O4 + 2 H2O + H2

For more information Click Here